If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2-4v-1=0
a = 7; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·7·(-1)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{11}}{2*7}=\frac{4-2\sqrt{11}}{14} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{11}}{2*7}=\frac{4+2\sqrt{11}}{14} $
| 1/5(n+4)=1/2(6n+1) | | x-6(4-10)=3x+6 | | 4=-x²+3x-8 | | 10=-5+3x | | 13–d=5 | | 54=t+39 | | 6x-10+3x=-10+9x | | -7/8x-3/40x+1/5x=-60 | | -3j-9j-13j-17=10 | | 3(x-9)=4+2 | | 2x+8=2(x=4) | | .5t=1.75 | | 13+14b=13b | | 10a-3(a-6)=66 | | -(7x+5)-(-6x-8)=2 | | 5/7x4/5=X | | 15=x+1.5 | | 161=4x+3(3x+19) | | 9m^2+7m-1=0 | | 1/6x=2/6 | | 1/3(5x-2)=5/6(x-1) | | 18=t+18 | | −7+(9n+2)=−(6n−3)−9−7+(9n+2)=−(6n−3)−9 | | 16=5x=5-2x | | 1/2t=7/4 | | 18t–17t=-10 | | 2(-7x+5)+2x=3x+3-15x | | 9=7+y | | 5(n/3)=2n+6 | | -10s-9s+s+s=15 | | 2(x+1)-8=6x-2(2x+3) | | 4x-2(3+2)=-6 |